A Generalized Version of the Lions-Type Lemma

نویسندگان

چکیده

Abstract In this short paper, I recall the history of dealing with lack compactness a sequence in case an unbounded domain and prove vanishing Lions-type result for Lebesgue-measurable functions. This lemma generalizes some results class Orlicz–Sobolev spaces. What matters here is behavior integral, not space.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lasry-Lions regularization and a Lemma of Ilmanen

inf u 6 Ttu(x) 6 u(x) 6 Ťtu(x) 6 supu for each t > 0 and each x ∈ H. A function u : H −→ R is called k-semi-concave, k > 0, if the function x −→ u(x)−‖x‖2/k is concave. The function u is called k-semi-convex if −u is k-semiconcave. A bounded function u is t-semi-concave if and only if it belongs to the image of the operator Tt, this follows from Lemma 1 and Lemma 3 below. A function is called s...

متن کامل

The Generalized XOR Lemma

The XOR Lemma states that a mapping is regular or balanced if and only if all the linear combinations of the component functions of the mapping are balanced Boolean functions. The main contribution of this paper is to extend the XOR Lemma to more general cases where a mapping may not be necessarily regular. The extended XOR Lemma has applications in the design of substitution boxes or S-boxes u...

متن کامل

An Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator

The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.

متن کامل

A Constrained version of Sauer’s Lemma

Sauer’s Lemma is extended to classes H of binary-valued functions on [n] = {1, . . . , n} which have a margin less than or equal to N on x ∈ [n], where the margin μh(x) of a binary valued function h at a point x ∈ [n] is defined as the largest nonnegative integer a such that h is constant on the interval Ia(x) = [x−a, x+a] ⊆ [n]. Estimates are obtained for the cardinality of classes of binary v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Mathematicae Silesianae

سال: 2023

ISSN: ['0860-2107', '2391-4238']

DOI: https://doi.org/10.2478/amsil-2023-0014